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Adaptive behavior requires us to identify and keep in 
mind the currently relevant “rules of the game”—that 
is, which responses to which stimuli likely lead to desir-
able outcomes (also known as task sets; Monsell, 2003). 
Moreover, given that the world is ever-changing, opti-
mal regulation of task sets involves resolving the trad-
eoff of needing to implement the current task set and 
shielding it from distraction (cognitive stability) versus 
being ready to update (or switch) task sets in response 
to changing environmental contingencies (cognitive 
flexibility; Goschke, 2003; Nassar & Troiani, 2020). 
Importantly, neither stability nor flexibility is inherently 
beneficial; rather, it is the ability to dynamically adapt 
one’s flexibility level to suit varying environmental 
demands, referred to as meta-flexibility, that facilitates 
optimal cognition (Goschke, 2013).

To adjust cognitive flexibility in an optimal manner, 
one must infer which task sets to use at a given time 
by observing environmental statistics (Behrens et al., 

2007; Yu et  al., 2020), such as associations between 
stimuli, responses, and outcomes (Niv, 2019). The pro-
cess of learning these associations can be characterized 
by reinforcement-learning models (Barraclough et al., 
2004; Lee et  al., 2012; Sutton & Barto, 1998). In the 
context of task switching, the value to be learned is the 
likelihood that a given task set is currently relevant. 
The level of cognitive flexibility that a learner exhibits 
can be described by their learning rate, which deter-
mines the degree to which recent feedback updates 
their beliefs. Previous studies have shown that people’s 
learning rates are typically low during periods of envi-
ronmental stability and high during periods of volatility 
(Behrens et al., 2007; Browning et al., 2015; Jiang et al., 
2014, 2015; Massi et al., 2018), although those studies 
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have looked at the direct learning of stimulus-reward 
associations or proportions of stimulus types. To our 
knowledge, it has not been tested whether environ-
mental volatility can similarly influence the learning of 
higher order rules such as task sets.

Moreover, adapting cognitive flexibility is impossible 
in a previously unobserved environment. How, then, 
do people set their cognitive flexibility in new situa-
tions? We posit that successfully matching cognitive 
flexibility levels to varying demand contexts could be 
mediated by learning and transferring knowledge about 
the demand structure of previous environments to 
novel environments. For example, while a novel task 
is learned, it may be beneficial to exploit relevant infor-
mation acquired in the past (Kemp et al., 2010; Mark 
et  al., 2020; Yu et  al., 2020). Previous studies have 
demonstrated that structural knowledge of an environ-
ment in the form of cognitive maps of stimulus associa-
tions (Mark et  al., 2020) and correlated bandit arms 
(Baram et al., 2021; Schulz et al., 2020) can foster trans-
ferable expectations about the structure of new envi-
ronments. However, to the best of our knowledge, it 
has not been tested whether learning parameters driv-
ing cognitive control processes, such as task set updat-
ing, can be transferred to different contexts.

We here combined these two prior insights—volatil-
ity learning and structure transfer—to create a novel 
test of the acquisition and transfer of cognitive control 
policies, specifically, one’s level of cognitive flexibility 
or switch readiness. We hypothesized that, first, cogni-
tive flexibility is adjusted in response to environmental 
volatility and, second, that a level of cognitive flexibility 
learned in one environment can be transferred to 
another. Observing such transfer of learned cognitive 
flexibility would be a novel finding in the fields of 
decision-making and cognitive control.

To this end, the current study investigated whether 
participants learning to update task sets faster or slower 
(i.e., at different learning rates) in one context transfer 
their expectations to another context. Specifically, we 
conducted three experiments employing a probabilistic 
version of the Wisconsin Card Sorting Task (Berg, 1948; 
Van Eylen et al., 2011), wherein two groups of partici-
pants were initially exposed to either a low- or high-
volatility learning environment, with seldom versus 
frequent rule changes, respectively. Next, participants 
from both groups switched to the same medium-volatility 
transfer environment, which had an intermediate rate of 
rule changes. Reinforcement-learning models were fitted 
to participants’ rule-choice behavior to quantify the 
rates of rule updating (i.e., the learning rates) of the 
two groups in both task phases. We predicted that par-
ticipants who encountered the low-volatility condition 
would have lower learning rates than participants who 
experienced the high-volatility condition and that these 

learning rates would generalize to the transfer phase. 
Across the three experiments, we systematically 
decreased the task and stimulus overlap to investigate 
whether the similarity between the learning and transfer 
phases influenced learning rate transfer.

Method

In three experiments, we examined whether partici-
pants could acquire and transfer knowledge about cog-
nitive flexibility demands across different contexts. In 
all experiments, participants were split into two groups 
(low volatility and high volatility) that completed a 
learning phase in which the task sets switched less or 
more frequently, respectively. Next, we tested them in 
a medium-volatility environment transfer phase in 
which the switch rate of task rules was the same for 
both groups. Our main question was whether expecta-
tions about the frequency of task-set updating acquired 
in the learning phase would generalize to the subse-
quent transfer phase. This study was reviewed and 
approved by the Duke Campus Institutional Review 
Board.

Procedure

Figure 1 illustrates two sample trials of the task para-
digm in the learning phase of all three experiments.  
On each trial, three cards arranged in a pyramid were 

Statement of Relevance

Many psychologists are interested in training peo-
ple in generalizable cognitive skills, but learning 
often does not transfer outside of the specific 
trained task. One prominent target skill is cogni-
tive flexibility, the ability to switch between dif-
ferent tasks, because many clinical populations 
have trouble with being flexible. In this study, we 
investigated a new way of training people in flex-
ibility by having them learn about how frequently 
task rules change in one context and then testing 
whether this knowledge about the rate of rule 
changes would be used in other contexts. We 
found that participants learned and transferred 
expectations about rule changes, even to contexts 
where both the tasks and stimuli were completely 
different from the training context. This shows 
that people can extract statistical information 
about how variable their environment is and then 
use that information to guide how flexible they 
are in other environments. This may help develop 
new cognitive training regimes.
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simultaneously presented on the screen, randomly cho-
sen with the following constraints. The card on the top 
served as the reference card, and the cards at the bot-
tom were choice cards. One of the two choice cards 
shared the same value as the reference card in one 
dimension (e.g., shape) but had different values in all 
the other dimensions (e.g., color, filling, number). The 
other choice card shared the same value as the refer-
ence card in a second dimension (e.g., color) and was 
different in the three other dimensions (e.g., shape, 
filling, number). Additionally, there were no shared 
values on any dimensions between the two choice 
cards. Only two of the four dimensions, randomly 
assigned for each participant, were relevant as possible 
matching rules during the experiment. The two relevant 
dimensions were explicitly explained to the participant 
and practiced (see below) prior to the experiment. Only 
one of the two dimensions was the valid matching rule 
at any one time, and the valid rule changed over time. 
It was the participants’ goal to figure out, via trial-and-
error learning, which matching rule was currently valid 
on a given trial.

Each trial began with a 1-s fixation period. Then, 
participants were asked to match the reference card to 
the correct choice card on the basis of the dimension 
that they believed to be the currently valid matching 
rule, using the “z” or “m” button to indicate the left or 
right choice card, respectively. The cards remained on 
the screen for up to 2 s or until participants made a 
response. If participants did not respond in time, they 
would receive the feedback “Too slow!” and would be 
asked to press the spacebar to begin the next trial. 
Otherwise, they would be given feedback of either “Oh 
no!” or “Bonus + $0.01” for 500 ms. The feedback valid-
ity was 80%, which was achieved by switching valid to 
invalid feedback on 20% of all trials. This means that 
participants had an 80% chance of receiving positive 

feedback (and a 20% chance of negative feedback) on 
correct responses, and vice versa for incorrect responses. 
The trials with invalid feedback were predetermined 
pseudorandomly with the constraint of no more than 
two consecutive instances of invalid feedback. We 
adopted 80% validity of feedback because it is a typical 
value for probabilistic reversal learning paradigms (e.g., 
Behrens et al., 2007; Costa et al., 2015, 2016). Partici-
pants were informed of the 80% feedback validity 
before the experiment. The correct sorting dimension 
stayed the same for a fixed number of trials before 
changing to the other dimension, but participants were 
not explicitly informed about the frequency of rule 
changes.

Before starting the main experiment, participants 
were asked to perform a practice task consisting of 40 
trials, with the sorting rule changing after 20 trials. The 
practice task was similar to the main experiment, except 
that the sorting rule was explicitly displayed on the 
screen. Participants had to achieve at least 90% accu-
racy on the practice task to move on to the main experi-
ment. In the main experiment, both the low- and 
high-volatility groups completed a total of 240 trials. In 
the first half of the experiment (the learning phase), 
the sorting rule changed every 30 trials for participants 
in the low-volatility group and every 10 trials for par-
ticipants in the high-volatility group. Note that an inher-
ent property of volatility is that recent feedback 
becomes more informative in more volatile conditions, 
as feedback on the current trial is more diagnostic of 
the current rule when the rule changes frequently. In 
the second half of the experiment (the transfer phase), 
the sorting rule changed every 20 trials for both groups; 
task rule volatility (and the informational value of 
recent feedback) was equal between the two groups 
during this phase. In Experiment 1, the stimuli and task 
sets remained the same during the transfer phase as in 

+ Oh no! + Bonus + $0.01

1000 ms up to 2000 ms 500 ms 1000 ms up to 2000 ms 500 ms

Trials 1∼120: rule change every 10 or 30 trials
Trials 121∼240: rule change every 20 trials

time

Fig. 1.  Illustration of the task paradigm. Each trial began with a fixation period, followed by a display of the reference card (top) and two 
choice cards (bottom) that required a participant response, followed by feedback. Participants were asked to match the correct choice card with 
the reference card according to the dimension (i.e., color, shape, filling, or number) that they believed to be the currently relevant matching 
rule. In the example above, participants had to sort cards according to color or shape. In the first half of the experiment (learning phase), 
the sorting rule changed every 30 trials for participants in the low-volatility group, and every 10 trials for participants in the high-volatility 
group. In the second half of the experiment (transfer phase), the sorting rule changed every 20 trials for both groups.
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the learning phase; in Experiment 2, the stimuli 
remained the same, but task sets were novel; and in 
Experiment 3, both stimuli and task sets were novel. 
There were no explicit instructions informing partici-
pants about the currently relevant rule; participants 
always had to rely on the feedback to figure out the 
currently relevant sorting rule to maximize their 
earnings.

Behavioral analyses

For each experiment, we compared the accuracies of 
the low- and high-volatility groups, and an accurate 
trial is defined as responding according to the correct 
sorting rule, regardless of feedback. We then split the 
data into learning and transfer phases, calculated the 
accuracies for each phase, and entered participants’ 
mean accuracy values into a Phase (learning vs. trans-
fer) × Volatility (low vs. high) analysis of variance 
(ANOVA). This was to ensure that any group differences 
in reinforcement-learning model parameters were not 
confounded by differences in overall accuracy.

We hypothesized that participants in the low-volatility 
groups would be slower to switch tasks in response to 
a rule change than the high-volatility participants. To 
test this directly, we examined the probability of par-
ticipants choosing the currently (or previously) active 
rule on trials before (and after) the periodic rule change 
point. For both learning and transfer phases, we aver-
aged individuals’ choice probability from −5 to +5 trials 
around the change point. Choice probability was entered 
into a Phase (learning vs. transfer) × Boundary (before 
vs. after) × Volatility (low vs. high) ANOVA. Because we 
hypothesized a priori that the high-volatility group 
would be quicker to switch after a rule change, we also 
compared volatility effects separately in each phase and 
time bin in planned follow-up analyses.

Reinforcement-learning modeling

We fitted reinforcement-learning models (Sutton & 
Barto, 1998) to the choice behavior to estimate learning 
rates for the low- and high-volatility groups in the 
learning and transfer phases of the three experiments, 
using Markov chain Monte Carlo (MCMC) sampling  
via the “stan” function from the RStan package (Stan 
Development Team, 2020) in the R programming envi-
ronment (R Core Team, 2022). We ran four MCMC 
chains for 1,000 samples, discarding the first 150 as a 
warm-up.

Our first model was a standard hierarchical reinforce-
ment-learning (RW-RL) model (Rescorla & Wagner, 

1972), fitted to the rule choice behavior. A hierarchical 
model was used because it takes into account the 
within-subjects error of each subject’s parameter esti-
mate, unlike in the classic approach of comparing the 
mean value of each parameter for each condition after 
estimating point estimates for each subject (Daw, 2011). 
The model consisted first of a Q-learning model  
(Watkins & Dayan, 1992), whereby value estimates for 
each rule are updated over time on the basis of feed-
back. Specifically, after an individual i on trial t chooses 
a matching rule, Ci t, { , }∈ 1 2  (e.g., color or shape), and 
feedback is received for that choice, Ri t, ,∈{ }0 1  (0 if 
negative feedback and 1 if positive feedback), the value 
estimate of that rule, V C( ), is updated according to the 
following:

 V C V C R V Ci t i t i t i t i i t i t i t, , , , , , ,+ ( ) = ( ) + − ( )( )1 α ,      (1)

where ai is each individual’s learning rate. The first trial 
of each experiment, Vi,1, as well as the first trial of the 
transfer phase in Experiments 2 and 3, Vi,121, were initial-
ized with a separate starting utility, with the prior dis-
tribution of N 0 5 0 5. , .( ). This was not done for the first 
trial of the transfer phase of Experiment 1 because in 
that experiment, there was no change in stimuli or task 
between the learning and transfer phases.

To estimate the distribution of learning rates across 
experiments, conditions, and individuals, we estimated 
a multilevel model with three levels of hierarchy. The 
top level of the hierarchy described how the average 
learning rate varied across different conditions, whereas 
the middle level described how learning rates varied 
among individuals within a condition. Finally, the bot-
tom level, described by Equations 1, 4, and 7, modeled 
how individuals learned from feedback over the course 
of the task and probabilistically generated their choices. 
The advantage of using a single hierarchical model 
across all experiments and conditions is to pool infor-
mation across conditions, resulting in less noisy esti-
mates and reducing overfitting to individual conditions 
(Gelman, Hill, & Yajima, 2012).

At the top level of the hierarchy, we assumed that 
the average learning rates for each condition were gen-
erated by a mixed-effects general linear model:
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Each condition was defined by a combination of a 
phase p (learning or transfer), a group g (high volatility 
or low volatility), and an experiment e (Experiment 1, 
2, or 3). The hyperparameter φη  is the population aver-
age learning rate for all subjects across all conditions. 
The condition-level random effects λη( , , )p g e  determine 
how far the average of each condition (i.e., phase p for 
each group g in each experiment e) is from the average 
of the population mean, with the variance τη

2 governing 
the overall variability across conditions.

Next, for the middle level of the hierarchy, we mod-
eled the learning rates of individual participants as 
arising from a mixed-effects general linear model:
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where the random effects gi p,  determine how far each 
individual i is from the average for their condition, 
µη( , , )p g e , with ση

2  governing the overall variability 
across subjects within each condition.

We examined the contrasts between conditions of 
interest. In particular, for each experiment and phase, 
we compared whether there were any differences in 
learning rate between the low- and high-volatility 
groups. We further examined whether this differed 
across experiments.

We also sought to examine whether the effects of 
learning rates were differentially driven by positive 
feedback (rewarded) versus negative feedback (unre-
warded) trials. Intuitively, the negative feedback trials 
would be expected to drive rule switches because par-
ticipants would presumably recognize that their cur-
rently applied rule was incorrect. We therefore fitted a 
second model, which we call the two-rates reinforce-
ment-learning (2R-RL) model, in which learning rate 
was fitted separately for positive (+) and negative (−) 
reward (r) feedback trials (Donahue & Lee, 2015). The 
value for each rule, V C( ), is here updated according to 
the following:

V C
V C R V C if R
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 −α 0  (4)

where α+,i is each individual’s learning rate for positive 
feedback trials, and α−,i is each individual’s learning 
rate for negative feedback trials. Similar to the RW-RL 

model, a hierarchical general linear model was used to 
estimate the mean effects of each condition:
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where φ ηr ,  are hyperparameters representing the popu-
lation mean learning rates for the feedback level r for 
all subjects across the two phases and three experi-
ments. The random effects λ ηr p g e, ( , , ) represent the 
deviations of each condition from the population 
means, and τ ηr ,

2  governs the overall variability in each 
condition.

Another hierarchical general linear model was used 
to model individual learning rates:
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where µ ηr p g e, ( , , ) are hyperparameters representing the 
mean learning rates for positive and negative feedback 
trials for each condition, and gr i p, ,  is the deviation of 
each individual from the condition means, with σ ηr ,

2  
variability.

Finally, we also examined how the two volatility 
groups differed in terms of their action policies. For 
both the RW-RL and the 2R-RL models, we assumed that 
subjects chose rules probabilistically on the basis of the 
value estimates according to a softmax distribution 
(Daw, 2011). Thus, choice probabilities of selecting 
each rule (e.g., color or shape) for each trial were 
computed as follows:
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Here, bi
 is a hyperparameter known as the inverse tem-

perature, which represents how sensitive choice prob-
abilities are to differences in choice value (Katahira, 
2015). bi  values were calculated for each subject similar 
to ηi, with a hyperparameter representing the popula-
tion’s mean φβ and how many standard deviations, 
λβ ( , , )p g e , each condition deviated from their group’s 
mean and then another hyperparameter µβ ( , , )p g e  
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representing each condition’s mean and the deviations 
of each individual, gi p, , from the condition mean:
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Whereas we report results from both the RW-RL and 
2R-RL models, using them to characterize a general 
overall learning rate (ai p, ) as well as separate learning 
rates for positive feedback (α+, ,i p) and negative feed-
back (α−, ,i p) trials, we compared model fits between the 
two models using the leave-one-out information crite-
rion (Vehtari et  al., 2017) and found that the 2R-RL 
model fit the data better. The expected log pointwise 
predictive density difference between the two models 
was −70.1, and its standard error difference was 30.6. 
This suggests that in the current experiments, partici-
pants did indeed have different learning rates for posi-
tive and negative feedback trials.

In the following analyses, we compared the posterior 
distribution of parameter estimates for learning rates 
and inverse temperature, in the learning phase and 
transfer phase, across the three experiments. We report 
δ̂, representing the mean difference between conditions 
in the model. In analyses with multiple factors, the 
results are reported in the format of an ANOVA. That 
is, we report the main effect of a factor by comparing 
the means of each level of that factor, averaging over 
all other factors. In the case of interactions, we exam-
ined the difference of differences between levels in 
each factor. We also report credible interval (CrI), which 
is the Bayesian equivalent of a confidence interval (with 
a slightly different technical interpretation). All CrIs 
reported are central 95% intervals of the posterior dif-
ferences. Additionally, given our a priori expectation 
that the learning rate in the high-volatility group could 
only be the same or higher than the low-volatility group 
in the transfer phase, for tests comparing the two vola-
tility groups, we also report p(δ̂ < 0), which is the 
proportion of the posterior difference that falls below 
zero (corresponding to the logic of a one-tailed p 
value).

Parameter estimates for the RW-RL model are sum-
marized in Table 1, and for the 2R-RL model in Table 2. 
Our main analyses focused on learning rates, however. 

We report the results of inverse temperatures in the 
Supplemental Material available online.

Finally, we performed a parameter recovery analysis 
that demonstrates that our models can faithfully repro-
duce parameter estimates from simulated data. We dem-
onstrate that our models identify differences in learning 
rates between groups when differences exist, and not 
when differences do not exist, because our results criti-
cally depend on trusting in the group learning rate 
differences determined by our models. The details  
of the parameter recovery analysis are reported in the 
Supplemental Material.

Exploring mechanisms of volatility 
learning

We closely examined choice data across the three 
experiments to explore possible computational mecha-
nisms behind the learning and transfer of volatility 
expectations. Firstly, although we fitted behavior using 
a simple reinforcement-learning model with no explicit 
representation of the periodic structure of the task, it 
is possible that participants did learn (at least approxi-
mately) that the task consisted of alternating blocks of 
predictable length and used this to anticipate rule 
changes. To look for evidence that participants antici-
pated switch points, we compared the probability of 
performing the previous rule on the first trial after the 
rule change with the probability of performing the 
current rule one to five trials prior to the rule change. 
Next, we asked whether we could identify temporal 
dynamics of volatility learning that might shed light on 
why transfer occurred. As participants learned the vola-
tility over time, we would expect them to change in 
how quickly their behavior adapts after a rule change; 
accordingly, we analyzed their mean accuracy in the 
one to five trials after each rule change, which could 
be used as a proxy for their learning rate at that point 
in the task.

To simulate the learning and transfer of environmen-
tal volatility across task phases, we simulated an agent 
that combined the basic reinforcement-learning method 
used to model behavior with a “meta” learner that 
tracked volatility via the variance of the prediction 
errors. To generate choices and track the value of each 
rule, we had the agent use Equations 7 and 1 respec-
tively, with initial starting utility and parameter values 
a and b. The optimal rule gave a reward of one with 
80% probability, compared with 20% for the suboptimal 
rule. The optimal rule switched every 10 (high volatil-
ity) or 30 (low volatility) trials for the first 120 trials, 
and then every 20 trials for the last 120 trials. After each 
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Table 1.  Mean Parameter Estimates From the Standard Hierarchical Reinforcement-Learning 
Model

Model fitted parameter

Parameters φη tη φb tb  

0.47
(0.09)

0.26
(0.08)

4.17
(0.21)

0.65
(0.19)

 

Transformed parameter
Generated 
quantity

Experiment and 
parameter mη s2

η lη mb s2
b lb ma

Experiment 1 0.61
(0.03)

1.42
(0.07)

 

  Learning phase  
    Low volatility 0.23

(0.11)
−0.96
(0.55)

4.73
(0.25)

0.91
(0.52)

0.56
(0.03)

    High volatility 0.59
(0.12)

0.47
(0.56)

4.20
(0.25)

0.05
(0.48)

0.64
(0.03)

  Transfer phase  
    Low volatility 0.16

(0.11)
−1.24
(0.55)

4.73
(0.26)

0.91
(0.53)

0.54
(0.03)

    High volatility 0.74
(0.12)

1.06
(0.57)

4.32
(0.26)

0.25
(0.50)

0.68
(0.03)

Experiment 2  
  Learning phase  
    Low volatility 0.23

(0.12)
−0.97
(0.55)

4.44
(0.24)

0.44
(0.47)

0.56
(0.03)

    High volatility 0.71
(0.13)

0.93
(0.57)

3.83
(0.25)

−0.55
(0.49)

0.67
(0.03)

  Transfer phase  
    Low volatility 0.52

(0.11)
0.19

(0.53)
3.71

(0.23)
−0.74
(0.50)

0.63
(0.03)

    High volatility 0.69
(0.11)

0.88
(0.55)

3.96
(0.23)

−0.33
(0.46)

0.67
(0.03)

Experiment 3  
  Learning phase  
    Low volatility 0.36

(0.11)
−0.45
(0.53)

4.79
(0.26)

1.01
(0.54)

0.59
(0.03)

    High volatility 0.54
(0.11)

0.29
(0.52)

4.55
(0.25)

0.63
(0.49)

0.63
(0.03)

  Transfer phase  
    Low volatility 0.33

(0.11)
−0.58
(0.54)

3.37
(0.24)

−1.29
(0.51)

0.58
(0.03)

    High volatility 0.61
(0.12)

0.54
(0.54)

3.26
(0.23)

−1.47
(0.55)

0.65
(0.03)

Note: Values in parentheses are standard deviations.

reward, the volatility υ was updated according to the 
following equation:

	 υ υ
τ
ω

δ υt t t+ = +
+

−( )1
2

1
, 	 (10)

where δ is the reward prediction error from Equation 
1, and the decay parameters t  and ω were both fixed 
at 0.1. The initial expected volatility, υ0 , was set to 0.25 
to match the variance of a Bernoulli random variable 
with probability 0.5.
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Table 2.  Mean Parameter Estimates From the Two-Rates Reinforcement-Learning Model

Model fitted parameter

Parameters φη+ tη+ φη- tη- φb tb  

0.83
(0.24)

0.69
(0.17)

0.40
(0.11)

0.32
(0.10)

4.39
(0.27)

0.80
(0.21)

 

Transformed parameter
Generated 
quantity

Experiment and 
parameter φ+,η s2

+,η l+,η φ-,η s2
-,η l-,η mb s2

b gmb m+,a m-,a

Experiment 1 1.46
(0.12)

0.59
(0.05)

1.28
(0.08)

 

  Learning phase  
    Low volatility 0.40

(0.27)
−0.63
(0.47)

0.28
(0.12)

−0.40
(0.46)

4.97
(0.26)

0.77
(0.45)

0.60
(0.06)

0.57
(0.03)

    High volatility 0.90
(0.33)

0.10
(0.53)

0.65
(0.14)

0.81
(0.52)

4.26
(0.28)

−0.18
(0.46)

0.71
(0.07)

0.66
(0.03)

  Transfer phase  
    Low volatility 0.64

(0.26)
−0.28
(0.45)

0.10
(0.12)

−1.01
(0.51)

4.78
(0.25)

0.50
(0.43)

0.65
(0.06)

0.53
(0.03)

    High volatility 1.59
(0.32)

1.14
(0.54)

0.60
(0.13)

0.62
(0.49)

4.30
(0.25)

−0.12
(0.43)

0.83
(0.05)

0.64
(0.03)

Experiment 2  
  Learning phase  
    Low volatility −0.30

(0.24)
−1.72
(0.56)

0.47
(0.11)

0.23
(0.48)

5.38
(0.29)

1.30
(0.53)

0.43
(0.06)

0.62
(0.03)

    High volatility 0.46
(0.30)

−0.56
(0.51)

0.91
(0.15)

1.67
(0.56)

4.15
(0.27)

−0.31
(0.44)

0.61
(0.07)

0.71
(0.03)

  Transfer phase  
    Low volatility 1.61

(0.26)
1.19

(0.54)
0.11

(0.12)
−0.99
(0.53)

3.80
(0.22)

−0.79
(0.46)

0.83
(0.04)

0.53
(0.03)

    High volatility 1.36
(0.29)

0.80
(0.51)

0.56
(0.12)

0.49
(0.48)

4.07
(0.24)

−0.42
(0.41)

0.79
(0.05)

0.64
(0.03)

Experiment 3  
  Learning phase  
    Low volatility 0.23

(0.27)
−0.90
(0.49)

0.46
(0.12)

0.21
(0.48)

5.31
(0.29)

1.22
(0.52)

0.56
(0.06)

0.61
(0.03)

    High volatility 1.07
(0.29)

0.36
(0.46)

0.36
(0.12)

−0.15
(0.48)

4.69
(0.25)

0.41
(0.45)

0.74
(0.06)

0.59
(0.03)

  Transfer phase  
    Low volatility 1.05

(0.27)
0.34

(0.47)
0.00

(0.13)
−1.35
(0.55)

3.50
(0.23)

−1.19
(0.49)

0.74
(0.05)

0.50
(0.03)

    High volatility 1.29
(0.28)

0.69
(0.47)

0.42
(0.13)

0.06
(0.49)

3.32
(0.22)

−1.42
(0.49)

0.78
(0.05)

0.60
(0.03)

Note: Values in parentheses are standard deviations.

Experiment 1

Experiment 1 examined whether prior exposure to low-
volatility versus high-volatility rule-switching environ-
ments biased people’s propensity to infer rule changes 
in response to negative feedback in subsequent 
medium-volatility environments. Here, we explored  
the transfer of learning rates between initial and 

subsequent environments that differed solely in terms 
of rule change volatility, with task stimuli and catego-
rization rules held constant.

Method

Participants.  Because of a lack of comparable prior 
studies, we could not base our target sample size on an 
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empirical effect size. We therefore opted for a relatively 
large target sample size (N = ~80). Eighty-eight partici-
pants were recruited from Amazon Mechanical Turk 
(MTurk); each participant was randomly assigned to one 
of two experimental groups. Participants were compen-
sated at a base rate of $2.50 plus any additional bonuses 
(M = $1.86, SD = $0.10) earned during the experiment. 
Thirteen participants were excluded from the analysis 
because of overall accuracy lower than 65%, leaving a 
final sample size of 75. The low-volatility group had 39 
participants (22 male, 15 female, two did not wish to 
reply; age: range = 26–56 years, M = 36.69 years, SD = 
8.81), and the high-volatility group had 36 participants 
(24 male, 11 female, one did not wish to reply; age: range = 
22–60 years, M = 39.44 years, SD = 10.40).

Stimuli.  Task stimuli consisted of 256 unique “cards” 
with one to four display items consisting of a specific 
shape (circle, triangle, plus, or star) in a particular color 
(blue, green, red, or purple) and a particular filling 
(checkered, dots, wave, or grid). We refer to these card 
properties as “dimensions” (number, shape, color, filling) 
that can take particular “values” (1, 2, 3, or 4 for the num-
ber dimension). Each trial involved a display of three 
such cards. See Figure 1 for sample stimuli.

Procedure.  In the first half of the experiment, partici-
pants had to sort cards according to two of the four 
dimensions (e.g., color and shape; randomly assigned 
across participants). Sorting rules alternated every 30 trials 
for the low-volatility group and every 10 trials for the 

high-volatility group. In the second half (transfer phase) 
of the experiment, sorting rules alternated every 20 trials 
in the transfer phase. There was no explicit separation 
between the first half and second half of the experiment.

Results

Behavior.  Figure 2 illustrates the rule sequence and 
choice data from a representative participant from each 
group. In spite of the 80%-validity probabilistic feedback, 
participants were able to track the correct rule most of 
the time (low-volatility group: M = 79.28%, SD = 5.76%; 
high-volatility group: M = 73.19%, SD = 4.13%). A Phase 
(learning vs. transfer) × Volatility (low vs. high) ANOVA 
showed a significant main effect of phase, F(1, 73) = 
39.82, p < .001, and group, F(1, 73) = 27.27, p < .001, as 
well as a Phase × Volatility interaction, F(1, 73) = 99.74, 
p < .001. The main effect of phase was driven by partici-
pants having higher accuracy for the transfer phase com-
pared with the learning phase (t = 3.56, p < .001), 
presumably because of a practice effect. The main effect 
of volatility was driven by the low-volatility group having 
overall higher accuracy than the high-volatility group (t = 
5.22, p < .001), and this difference was significant in the 
learning phase (t = 11.03, p < .001) but not in the transfer 
phase (t = −0.99, p = .33). This effect was expected, given 
the greater number of (error-inducing) rule reversals in 
the high-volatility group’s learning phase.

Figure 3 illustrates participants’ choice probability as 
a function of time. We examined whether participants 
were more likely to switch task rules after the change 

Dimension 2

Dimension 1

Dimension 2

Dimension 1

0 20 40 60 80 100 120 140 160 180 200 220 240

0 20 40 60 80 100 120 140 160 180 200 220 240

Low-volatility

High-volatility

a

b

Fig. 2.  Dimension rule sequences and a representative participant from (a) the low-volatility group and (b) the high-volatility 
group. On each trial, participants chose a card on the basis of their belief of the currently valid dimensional matching rule, here 
called Dimension 1 or 2 (circles). They received positive feedback (filled circles) when sorting according to the correct dimen-
sion (black line) 80% of the time and for incorrect choices 20% of the time, and they received negative feedback (open circles) 
for correct choices 20% of the time and for incorrect choices 80% of the time.
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Fig. 3.  Choice probability (participants’ tendency to choose the rule that was active prior to the rule change) as a function 
of trial before and after the rule change point for the learning and transfer phases of each experiment. Error bars represent 
standard errors.
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point. A Phase (learning vs. transfer) × Boundary 
(before vs. after) × Volatility (low vs. high) ANOVA 
showed a significant main effect of phase, F(1, 73) = 6.76, 
p = .01, a main effect of boundary, F(1, 73) = 600.71,  
p < .001, and a main effect of volatility, F(1, 73) = 12.57, 
p < .001. There was a Phase × Boundary interaction, 
F(1, 73) = 20.77, p < .001, and a Boundary × Volatility 
interaction, F(1, 73) = 5.09, p = .03. No other interaction 
was significant. We next conducted separate Boundary 
(before vs. after) × Volatility (low vs. high) ANOVAs on 
the learning and transfer phases. In the learning phase, 
we found a main effect of boundary, F(1, 73) = 225.21, 
p < .001, driven by a higher probability of performing 
the current task rule prior to the rule change. There 
was also a main effect of volatility, F(1, 73) = 10.73,  
p < .01, driven by the low-volatility group being overall 
more likely to perform the initial task rule. There was 
no Boundary × Volatility interaction, F(1, 73) = 2.98,  
p = .09. t tests between volatility groups showed that 
prior to the rule change, the low- and high-volatility 
groups were equally likely to perform the current task 
rule (t = 1.81, p = .07). However, the low-volatility group 
was more likely to persist with the previous rule after 
the change point (t = 2.93, p < .01). In the transfer phase, 
we found a main effect of boundary, F(1, 73) = 693.90, 
p < .001, driven by a higher probability of performing 
the current task rule prior to the rule change. There was 
also a main effect of volatility, F(1, 73) = 6.21, p = .02, 
which was driven by the low-volatility group being over-
all more likely to perform the initial task rule. There was 
a marginally significant Boundary × Volatility interaction, 
F(1, 73) = 3.86, p = .05. t tests between volatility groups 
showed that prior to the rule change, the low- and high-
volatility groups were equally likely to perform the cur-
rent task rule (t = 0.92, p = .36). However, the low-volatility 
group was more likely to persist with the previous rule 
after the change point (t = 2.67, p < .01).

Reinforcement-learning models.  Learning rate param-
eter estimates are visualized in Figure 4. As a confirmatory 
analysis, we first tested whether learning rates in the high-
volatility group were higher than in the low-volatility 
group during the learning phase, where the matching 
rule switched every 10 trials compared with 30 trials. As 
expected, the RW-RL model showed that learning rates for 
participants in the high-volatility group were significantly 
larger than for those in the low-volatility group, δ̂ = 0.08, 
95% CrI = [0.01, 0.16], p(δ̂ < 0) = .01. Similarly, in the 2R-RL 
model, we also found a main effect of volatility; the high-
volatility group exhibited higher learning rates than the 
low-volatility group, δ̂ = 0.10, 95% CrI = [0.004, 0.19],  
p(δ̂ < 0) = .02. There was no main effect of feedback (δ̂ = 
−0.04, 95% CrI = [−0.14, 0.07]) and no Feedback × Volatility 
interaction (δ̂ = −0.01, 95% CrI = [−0.11, 0.09]).

Our main interest centered on the learning rates 
during the transfer phase. We found that according to 
the RW-RL model, the high-volatility group continued 
to show a higher learning rate than the low-volatility 
group during this phase, δ̂ = 0.14, 95% CrI = [0.06, 0.21], 
p(δ̂ < 0) < .001. The 2R-RL model showed a main effect 
of volatility, δ̂ = 0.15, 95% CrI = [0.07, 0.23], p(δ̂ < 0) < 
.001, driven by higher learning rates for the high- 
volatility group; there was also a main effect of feedback 
(δ̂ = −0.15, 95% CrI = [−0.24, −0.07]), driven by the learn-
ing rates being higher for positive feedback trials, and 
no Feedback × Volatility interaction (δ̂ = −0.03, 95% 
CrI = [−0.11, 0.05]). These results document that volatility- 
driven learning rates acquired during the first half of 
the task generalized to the second half transfer phase, 
where volatility was equated between groups.

Our results showed that participants adapted their 
rule-switching strategies to the volatility of the task envi-
ronment, reflected in faster rule switches around task 
boundaries as well as in a higher learning rate in partici-
pants in the high-volatility compared with the low-
volatility environment. Importantly, pre-exposure to 
high-volatility compared with low-volatility environments 
led to a higher learning rate in a subsequent medium-
volatility environment. In other words, learned expecta-
tions about the level of cognitive flexibility required in 
the environment endured over time.

Experiment 2

Experiment 2 tested whether learning rates would trans-
fer when the sets of rules changed between the learning 
and transfer phases (while the stimuli remained the 
same). Specifically, we probed whether exposure to 
low- or high-volatility learning environments involving 
two of four possible task rules (e.g., shape and color 
matching) would bias the learning rate in subsequent 
medium-volatility environments with the other two pos-
sible task rules (i.e., number and filling matching). 
Obtaining transfer under these conditions would indi-
cate that the expectations that are being transferred are 
independent of the specific task rules, thus representing 
a form of meta-learning.

Method

Participants.  Ninety-four participants were recruited 
from MTurk, and each participant was randomly assigned 
to one of the two volatility groups. Participants were 
compensated at a base rate of $2.50 plus any additional 
bonuses (M = $1.86, SD = $0.10) earned during the 
experiment. Twelve participants were excluded from the 
analysis because of overall accuracy lower than 65%, 
leaving a final sample size of 82. The low-volatility group 
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had 42 participants (20 male, 22 female; age: range = 
23–70 years, M = 39.64 years, SD = 11.80), and the high-
volatility group had 40 participants (22 male, 18 female; 
age: range = 24–76 years, M = 38.80 years, SD = 11.36).

Stimuli.  The stimuli were the same as in Experiment 1.

Procedure.  As in Experiment 1, in the first half of the 
experiment, participants had to sort cards according to 
two of the four dimensions (e.g., color and shape; ran-
domly assigned across participants). However, unlike 
Experiment 1, before the start of the second half (transfer 

phase) of the experiment, participants were taken to 
another instruction screen and informed that they would 
now be sorting cards according to the other two dimen-
sions that were previously irrelevant in the first half (e.g., 
filling and number). There was no practice for the trans-
fer phase, and it started as soon as participants indicated 
that they were ready.

Results

Behavior.  Participants were able to perform the task rea-
sonably well (low-volatility group: M = 79.22%, SD = 5.66%; 
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Fig. 4.  Group level (high volatility vs. low volatility) learning rate parameter estimates from (a) the standard hierarchical reinforcement-
learning (RW-RL) model and (b) the two-rates reinforcement-learning (2R-RL) model for the learning and transfer phases in all three experi-
ments. The error bars reflect the fitted group-level standard deviation estimates.
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high-volatility group: M = 73.58%, SD = 4.45%). The Phase 
(learning vs. transfer) × Volatility (low vs. high) ANOVA 
showed a significant main effect of phase, F(1, 80) = 
22.80, p < .001, a main effect of volatility, F(1, 80) = 24.89, 
p < .001, and a Phase × Volatility interaction, F(1, 80) = 
40.93, p < .001. As in Experiment 1, the main effect of 
phase was driven by participants having higher accuracy 
for the transfer phase compared with the learning phase 
(t = 4.99, p < .001), presumably because of generic task 
practice effects. The main effect of volatility was driven 
by the low-volatility group having higher accuracy than 
the high-volatility group (t = 3.71, p < .001). The interac-
tion was again driven by the low-volatility group having 
higher accuracy compared with the high-volatility group 
in the learning phase (t = 8.39, p < .001) but not in the 
transfer phase (t = −0.54, p = .59).

We next examined participants’ choice probabilities 
before and after the rule change point. The Phase (learn-
ing vs. transfer) × Boundary (before vs. after) × Volatility 
(low vs. high) ANOVA showed a significant effect of 
phase, F(1, 80) = 5.67, p = .02, a main effect of boundary, 
F(1, 80) = 837.97, p < .001, and a main effect of volatility, 
F(1, 80) = 11.52, p = .001. There was a Phase × Boundary 
interaction, F(1, 80) = 10.59, p < .01, a Phase × Volatility 
interaction, F(1, 80) = 4.55, p = .04, and a Boundary × 
Volatility interaction, F(1, 80) = 6.23, p = .01. The Phase × 
Boundary × Volatility interaction was not significant, F(1, 
80) = 0.16, p = .69. We next conducted separate Bound-
ary (before vs. after) × Volatility (low vs. high) ANOVAs 
on the learning and transfer phases. In the learning 
phase, we found a main effect of boundary, F(1, 80) = 
287.38, p < .001, driven by a higher probability of per-
forming the current task rule prior to the rule change. 
There was a main effect of volatility, F(1, 80) = 12.45, p < 
.001, driven by the low-volatility group being overall 
more likely to perform the initial task rule. There was 
no Boundary × Volatility interaction, F(1, 80) = 1.93, p = 
.17. t tests between volatility groups showed that prior 
to the rule change, the low-volatility group was more 
likely to perform the current task rule (t = 2.37, p = .02). 
Additionally, the low-volatility group was more likely to 
persist with the previous rule after the change point (t = 
3.01, p < .01). In the transfer phase, results showed a 
main effect of boundary, F(1, 80) = 766.71, p < .001, 
driven by a higher probability of performing the current 
task rule prior to the rule change. There was no main 
effect of volatility, F(1, 80) = 2.65, p = .11. There was a 
significant Boundary × Volatility interaction, F(1, 80) = 
6.16, p = .02. t tests between volatility groups showed 
that prior to the rule change, the low- and high-volatility 
groups were equally likely to perform the current task 
rule (t = −0.38, p = .71). However, the low-volatility 
group was more likely to persist with the previous rule 
after the change point (t = 2.75, p < .01).

Reinforcement-learning models.  In the learning phase, 
the high-volatility group had a higher learning rate than 
the low-volatility group, as estimated by the RW-RL 
model, δ̂ = 0.11, 95% CrI = [0.03, 0.19], p(δ̂ < 0) < .01. 
Learning rates from the 2R-RL model also showed a main 
effect of volatility, δ̂ = 0.14, 95% CrI = [0.05, 0.23], p(δ̂ < 0) = 
.001, which was again driven by the high-volatility group 
having a higher learning rate. We additionally found a 
main effect of feedback (δ̂ = 0.15, 95% CrI = [0.04, 0.25]) 
because of higher learning rates for the negative feed-
back trials. There was no Feedback × Volatility interac-
tion (δ̂ = −0.04, 95% CrI = [−0.14, 0.05]).

In the transfer phase, the RW-RL model showed no 
significant difference of learning rates between groups, 
δ̂ = 0.04, 95% CrI = [−0.03, 0.11], p(δ̂ < 0) = .13, although 
the high-volatility group showed a numerically higher 
learning rate. The 2R-RL model showed no main effect 
of volatility, δ̂ = 0.04, 95% CrI = [−0.04, 0.10], p(δ̂ < 0) = 
.15, but there was a main effect of feedback (δ̂ = −0.23, 
95% CrI = [−0.30, −0.15]), which was driven by higher 
learning rates for positive feedback trials. Critically, 
results also showed a significant Feedback × Volatility 
interaction (δ̂ = 0.07, 95% CrI = [0.01, 0.14]). The inter-
action was driven by the high-volatility group showing 
a higher learning rate compared with the low-volatility 
group for negative feedback trials, δ̂ = 0.11, 95% CrI = 
[0.03, 0.19], p(δ̂ < 0) < .01, but not for positive feedback 
trials, δ̂ = −0.04, 95% CrI = [−0.15, 0.07], p(δ̂ < 0) = .74. 
Thus, learning rates acquired during the learning phase 
generalized to rule-switching performance in the trans-
fer phase despite a change in specific task rules between 
phases, but only for negative feedback.

Even though in Experiment 2, the task rules that 
participants were switching between changed from the 
learning phase to the transfer phase, we observed evi-
dence for transfer of rule-learning rates. These results 
suggest that participants do not transfer a specific asso-
ciation between particular task rules and change point 
estimates in the present paradigm but, rather, that they 
form and transfer a more abstract expectation of the 
volatility of the rules governing the environment, as 
reflected in the learning rate. This transfer was expressed 
primarily in response to negative feedback rather than 
to positive feedback, in line with the assumption that 
negative feedback trials in particular cause participants 
to switch rules.

Experiment 3

In Experiment 3, we provided a test of “far transfer” by 
investigating whether prior experiences of low- or high-
volatility environments would bias the tendency to shift 
sets in subsequent medium-volatility environments with 
both novel rules and novel stimuli.
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Method

Participants.  One hundred one participants were recrui
ted from MTurk, and each participant was randomly 
assigned to one of two volatility groups. Participants were 
compensated at a base rate of $2.50 plus any additional 
bonuses (M = $1.82, SD = $0.09) earned during the exper-
iment. Twenty participants were excluded from the analy-
sis because of overall accuracy lower than 65%, leaving a 
final sample size of 81. The low-volatility group had 39 
participants (26 male, 12 female, one did not wish to 
reply; age: range = 27–67 years, M = 41.41 years, SD = 
10.94), and the high-volatility group had 42 participants 
(23 male, 18 female, one did not wish to reply; age: range = 
21–56 years, M = 36.29 years, SD = 7.88).

Stimuli.  We used the same stimuli as in Experiments 1 
and 2 for the learning phase of Experiment 3. To test 
whether the rule learning rates could transfer to other tasks 
with novel stimuli, we used face stimuli taken from the 
Chicago Face Database (Ma, Correll, & Wittenbrink, 2015) 
for the Experiment 3 transfer phase. A total of 64 emotion-
neutral faces (16 Asian male, 16 Asian female, 16 Caucasian 
male, and 16 Caucasian female) were used.

Procedure.  In the first half of the experiment (the learn-
ing phase), participants had to sort cards according to 
two of the four dimensions (e.g., color and shape; ran-
domly assigned across participants). Before the start of 
the second half (transfer phase) of the experiment, par-
ticipants were taken to another instruction screen and 
informed that they would now be sorting face images 
according to either gender (male vs. female) or race 
(Asian vs. Caucasian). As in the card-matching task, on 
each trial three faces were displayed arranged in a pyra-
mid, with the face on the top serving as the reference 
face, and the faces at the bottom as choice faces. Each of 
the two choice faces shared only one matching domain 
(gender or race) with the reference face. There was no 
practice for the transfer phase, and it started as soon as 
participants indicated that they were ready.

Results

Behavior.  Both groups were able to perform the task 
reasonably well (low-volatility group: M = 74.75%, SD = 
5.66%; high-volatility group: M = 71.96%, SD = 4.81%). 
The Phase (learning vs. transfer) × Volatility (low vs. 
high) ANOVA showed a significant main effect of phase, 
F(1, 79) = 11.38, p = .001, a main effect of volatility, F(1, 
79) = 5.74, p = .02, and a Phase × Volatility interaction, 
F(1, 79) = 16.28, p < .001. As in the prior two experi-
ments, the main effect of phase was driven by higher 
accuracy for the transfer phase (t = 3.36, p < .001). In line 

with previous results, mean accuracy was higher for the 
low-volatility group in the learning phase (t = 4.45, p < 
.001) but not in the transfer phase (t = −1.24, p = .22).

Examination of participants’ rule choice probability 
before and after the rule change using a Phase (learning 
vs. transfer) × Boundary (before vs. after) × Volatility 
(low vs. high) ANOVA showed a significant effect of 
boundary, F(1, 79) = 685.66, p < .001. There were no 
main effects of phase, F(1, 79) = 3.56, p = .06, or volatil-
ity, F(1, 79) = 2.58, p = .11. There was a Boundary × 
Volatility interaction, F(1, 79) = 4.10, p < .05. None of 
the other interactions were significant—all Fs(1, 79) < 
0.84; all ps > .36. We conducted separate Boundary 
(before vs. after) × Volatility (low vs. high) ANOVAs on 
the learning and transfer phases. In the learning phase, 
we found a main effect of boundary, F(1, 79) = 350.51, 
p < .001, but no main effect of group, F(1, 79) = 0.59, 
p = .45, and no Boundary × Volatility interaction, F(1, 
79) = 1.28, p = .26. Direct comparisons between volatil-
ity groups showed no difference in before (t = −0.14, 
p = .89) or after (t = 1.18, p = .24) the rule change point. 
In the transfer phase, we found a main effect of bound-
ary, F(1, 79) = 350.15, p < .001, but no main effect of 
group, F(1, 79) = 3.45, p = .07, or Boundary × Volatility 
interaction, F(1, 79) = 3.07, p = .08. t tests between 
volatility groups showed that there were no differences 
between the low- and high-volatility groups (t = 0.31, 
p = .75) before the change point; however, the low-
volatility group was significantly more likely to perform 
the previous task rule after the change point (t = 2.27, 
p = .03).

Reinforcement-learning models.  In the learning phase, 
the RW-RL model found no significant difference between 
learning rates in the two volatility groups, δ̂ = 0.04, 95% 
CrI = [−0.03, 0.12], p(δ̂ < 0) = .12, although the high- 
volatility group had a numerically higher learning rate 
compared with the low-volatility group. The 2R-RL model 
showed that the high-volatility group had higher learning 
rates than the low-volatility group, δ̂ = 0.08, 95% CrI = 
[−0.01, 0.17], p(δ̂ < 0) = .03. There was no main effect of 
feedback (δ̂ = −0.05, 95% CrI = [−0.15, 0.05]). However, 
there was a significant Feedback × Volatility interaction 
(δ̂ = −0.10, 95% CrI = [−0.19, −0.01]). Post hoc analysis 
suggests that the interaction was driven by the high- 
volatility group showing higher learning rates than the 
low-volatility group for positive feedback, δ̂ = 0.18, 95% 
CrI = [0.02, 0.34], p(δ̂ < 0) = .01, but not negative feed-
back, δ̂ = −0.02, 95% CrI = [−0.10, 0.05], p(δ̂ < 0) = .74.

In the transfer phase, the RW-RL model had higher 
learning rates in the high-volatility group compared with 
the low-volatility group, δ̂ = 0.07, 95% CrI = [−0.01, 0.15], 
p(δ̂ < 0) = .04. Similarly, in the 2R-RL model, the 
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high-volatility group had higher learning rates than the 
low-volatility group, δ̂ = 0.07, 95% CrI = [−0.003, 0.15], 
p(δ̂ < 0) = .03. We found a main effect for feedback (δ̂ = 
−0.21, 95% CrI = [−0.29, −0.12]), driven by higher learn-
ing rates during positive feedback trials. We found no 
Feedback × Volatility interaction (δ̂ = 0.03, 95% CrI = 
[−0.05, 0.11]). Although this interaction was not signifi-
cant, on the basis of our previous findings we further 
examined the volatility effect in positive and negative 
feedback separately and found that the volatility effect 
was significant in the negative feedback trials, δ̂ = 0.10, 
95% CrI = [0.02, 0.19], p(δ̂ < 0) < .01, but not positive 
feedback trials, δ̂ = 0.04, 95% CrI = [−0.09, 0.18], p(δ̂ < 
0) = .25. Thus, learning rates acquired during the learn-
ing phase generalized to rule-switching performance in 
the transfer phase, in spite of a change in both the 
stimulus materials and task rules between phases.

In sum, we observed rule- and stimulus-independent 
“far transfer” of rule-learning rates, in particular for nega-
tive feedback trials. In a final analysis, we sought to 
directly compare the degree of learning rate transfer 
between experiments, testing whether transfer differed 
quantitatively as a function of whether rules and stimuli 
remained the same (Experiment 1), whether rules 
changed (Experiment 2), or whether both rules and stim-
uli changed between the learning and transfer phases.

Extended Analysis Across Experiments

Cross-experiment transfer effect 
comparison

We compared the transfer phase learning rates across 
the three experiments. Results from the RW-RL model 
showed a main effect of volatility, δ̂ = 0.08, 95% CrI = 
[0.03, 0.12], p(δ̂ < 0) < .001; the high-volatility groups 
had higher learning rates than the low-volatility groups. 
There were no pairwise differences in overall learning 
rates across the three experiments (max | ̂δ| = 0.04, 
95% CrI = [−0.09, 0.01]). There were no interactions 
between volatility and experiments (max δ̂ = 0.05, 95% 
CrI = [−0.001, 0.10]).

With learning rates from the 2R-RL model, we found 
a main effect of volatility, δ̂  = 0.09, 95% CrI = [0.04, 
0.13], p( δ̂  < 0) < .001; the high-volatility groups had 
higher learning rates than the low-volatility groups. 
There was also a main effect of feedback ( δ̂ = 0.20,  
95% CrI = [0.14, 0.25]), driven by higher learning rates 
during negative feedback trials. There were no differ-
ences in mean learning rates between pairwise com-
parisons across experiments (max δ̂ = 0.4, 95% CrI = 
[−0.01, 0.09]). There was no Volatility × Feedback × 
Experiment interaction (max δ̂ = 0.05, 95% CrI = 
[−0.0004, 0.10]).

These results echo the previous experiments in pro-
viding evidence for a transfer of task rule-learning rates, 
even though in Experiment 3, this involved applying 
new rules to new stimuli (far transfer). Our results again 
also suggest that this transfer occurs primarily for nega-
tive rather than positive feedback trials. A comparison 
of the three experiments showed that the degree of this 
transfer did not differ between experiments and was 
therefore unaffected by the similarity between learning 
and transfer tasks.

Mechanisms of volatility learning

To probe whether participants explicitly anticipated 
switch points (e.g., by counting trials), we compared 
the probability of performing the previous rule at the 
first trial after the rule change with the probability of 
performing the current rule one to five trials prior to 
the rule change. As illustrated in Figure 3, in all experi-
ments and conditions, the probability of picking the 
preswitch rule remains stable near 0.8 through the first 
trial after the rule switch. Across all experiments and 
groups, none of the first trials after the rule change 
showed a decreased probability of choosing the pre-
switch rule compared with the one to five trials prior 
to the rule change (max t = 0.60, p = .55). Therefore, 
only after participants have received feedback did rule 
choice probabilities substantially change. This suggests 
that participants do not anticipate the task switches 
ahead of time or count the number of trials. Rather, 
they likely used a reactive strategy that relies on nega-
tive feedback. Note that whereas participants in the 
high-volatility condition weighted recent feedback com-
paratively more heavily, participants in both conditions 
appear to have used a reactive, feedback-driven strat-
egy, which is consistent with the simple model-free 
reinforcement-learning mechanism we have used to 
describe behavior. Second, to gain insight into the 
mechanism of transfer between the learning and trans-
fer phases, we examined the time course of volatility 
learning over the course of the task. The mean accuracy 
in the one to five trials after each rule change as a 
function of rule change experience is plotted in Figure 
5a. The time course of learning shows that behavior 
was adjusted only in the beginning stages of the learn-
ing phase but remained stable when environmental 
volatility changed at the onset of the transfer phase. 
Specifically, in the high-volatility group, postchange 
accuracy increased over the first three rule changes 
(third change vs. first change; t = 2.63, p < .01) but then 
remained stable over the rest of the task, including after 
the beginning of the transfer phase. The low-volatility 
group, on the other hand, began with initial postchange 
accuracy similar to the high-volatility group (t = 0.51, 
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p = .61) but never significantly increased in accuracy 
with subsequent rule changes (max t = 1.41, p > .15). 
This indicates that an unexpected volatility level is 
quickly learned at the beginning of the task, yet when 
the volatility level changes later in the transfer phase, 
learning happens slowly if at all. Thus, one possibility 
is that transfer of volatility expectations occurs because 
of the failure to update volatility expectations when 
volatility changes.

On the basis of the above two observations, our data 
are consistent with a learning model that learns volatility 
by tracking prediction error magnitudes but updates its 
belief about environmental volatility with a “meta” learn-
ing rate that decays over time. To demonstrate the plau-
sibility of this mechanism for the transfer effects 
observed in our task, we simulated a learning agent with 
a decaying volatility learning rate performing the same 
task as the participants. The agent’s learned volatility 
over the course of the task (Fig. 5b) mirrors the learning 
trajectories of the participants (Fig. 5a), with the learned 
volatility rising rapidly in the high-volatility condition 
and then dropping slowly in the transfer phase, while 

remaining stable throughout the low-volatility condition 
(for details on the simulation, see the Method section 
in the introduction). Decaying learning rates are a stan-
dard algorithmic policy in modern machine learning, 
allowing agents to more readily find global minima in 
value landscapes (Duchi et al., 2011; Jacobs, 1988). In 
humans, it has been shown that learning rates decrease 
with the scale of prediction errors (Pearce & Hall, 1980); 
learning stabilizes over time when the environment is 
stable. Thus, people might reduce their learning rate of 
volatility learning under the expectation that volatility 
itself will remain stable, resulting in an inability to adjust 
to changes in volatility when they occur.

General Discussion

The current study examined whether participants 
acquire and transfer expectations about cognitive flex-
ibility demands across different contexts. We tested 
whether learning to change task sets more or less fre-
quently in one context would affect learning rates in 
subsequent contexts. We replicated previous findings 
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showing that participants adjusted their learning rates 
according to environment volatility (Behrens et  al., 
2007; Massi et al., 2018), with high-volatility environ-
ments leading to higher learning rates, and extended 
that finding from stimulus-specific associations to  
stimulus-independent rules. Crucially, we further found 
that the inductive biases acquired during the learning 
phase affected learning rates in a subsequent transfer 
phase (Experiment 1) and generalized to novel task 
rules (Experiment 2) and novel rules and stimuli 
(Experiment 3). This was reflected by an overall higher 
learning rate in the transfer phase for participants previ-
ously exposed to a high-volatility environment com-
pared with those previously exposed to a low-volatility 
environment, which was mainly driven by learning from 
negative feedback (unrewarded) trials. Taken together, 
this demonstrates that people form and transfer an 
abstract, stimulus- and task-independent expectation 
of the volatility of the rules governing their environ-
ment, expressed in a more or less cognitively flexible 
rule-updating strategy. To the best of our knowledge, 
this is the first demonstration of people’s ability to 
extract and reuse cognitive control learning parameters 
that transcend specific stimuli and tasks.

Previous behavioral studies have shown that partici-
pants can strategically adapt their readiness to switch 
tasks in line with changes in contextual switch likeli-
hood (reviewed by Braem & Egner, 2018). For instance, 
when the frequency of cued task switches is manipu-
lated over different blocks of trials, participants exhibit 
smaller switch costs in blocks where switches are fre-
quent compared with when they are rare (e.g., Chiu & 
Egner, 2017; Dreisbach & Haider, 2006; Leboe et  al., 
2008; Monsell & Mizon, 2006; Siqi-Liu & Egner, 2020). 
However, unlike in the present experiments, this change 
in switch readiness seems to be limited to “biased” task 
sets that are associated with more frequent switch or 
repeat trials and does not generalize to intermingled 
“unbiased” task sets where the likelihood of switching 
versus repeating a task is equal (Siqi-Liu & Egner, 2020). 
This suggests that meta-flexibility in cued task switch-
ing is task-set or stimulus specific, rather than being 
due to participants developing a more global flexible 
cognitive strategy or processing mode that would pro-
mote switching in general (i.e., to any other task). This 
lack of transfer to other tasks also fits with cognitive 
training studies that demonstrated that switch costs 
decreased over training when the same tasks were used, 
but substantial costs reemerged when participants were 
given new tasks to switch between (Sabah et al., 2019, 
2021). A possible explanation underlying this dearth of 
transfer in prior studies could be that frequent forced 
(cued) switching motivates participants to keep the 
multiple relevant task sets in working memory, which 
would ease the switching between the respective tasks 

but may not necessarily transfer to new tasks (Dreisbach 
& Fröber, 2019; Fröber et al., 2021).

How was transfer of switch readiness achieved in 
the present study? We posit that this is likely because 
of reliance on a different mechanism for modulating 
meta-flexibility. One proposal is that one’s set point on 
the cognitive stability-flexibility continuum can be con-
ceptualized in terms of an “updating threshold”—the 
ease with which new task rule information is allowed 
to enter working memory (Dreisbach & Fröber, 2019; 
Goschke, 2003, 2013). Thus, one way to increase flex-
ibility may be to lower this updating threshold, which 
in turn could increase flexibility in a more generalizable 
fashion (Dreisbach & Fröber, 2019). Our experiments 
lacked explicit instructions for when to switch; instead, 
people had to discover the underlying rules on the basis 
of environmental feedback amid uncertainty (Behrens 
et al., 2007; Niv et al., 2015; Van Eylen et al., 2011). 
Self-initiated switches without explicit cueing are 
thought to require a higher degree of disengagement 
from the previous task to perform the switch (Manly 
et al., 2002; Van Eylen et al., 2011), making it less likely 
for participants to keep the alternative task in working 
memory. Studies that examined the influence of forced-
choice task switching on voluntary task switches found 
that increasing the proportion of forced choices, in 
particular in combination with high switch rates, 
increases voluntary task-switching rates (Chiu et  al., 
2020; Fröber & Dreisbach, 2017). Other studies showed 
that by rewarding switches in a prior cued task-switching 
phase, it is possible to increase subsequent voluntary 
task-switching behavior (Braem, 2017), suggesting that 
cognitive flexibility is susceptible to its recent reinforce-
ment-learning history. Taken together, in conditions in 
which experience is used to learn task models (Niv, 
2019), meta-flexibility may be achieved by altering 
one’s updating threshold or the rate at which this 
threshold is reached (both would be observed as a dif-
ference in reinforcement-learning rate), which in turn 
may promote transferable effects.

According to our volatility learning simulation, the 
current transfer effects may reflect the frequency structure 
during the learning phase, leading participants to con-
tinue with their previous expectations, even when the 
environmental volatility changes (Sabah et al., 2019). Pre-
vious studies have shown that inferring hidden underly-
ing structural forms such as the relationships between 
stimuli, periodicities, or cognitive maps can enable rapid 
generalization of behavior to new environments (Behrens 
et al., 2018; Halford et al., 1998; Kemp et al., 2010; Mark 
et al., 2020). For instance, in the Mark et al. (2020) study, 
two groups of participants learned either hexagonal or 
community structure graphs and then learned a new 
graph with either the same or the alternate structure. The 
authors found that the experience with the first graph 
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shaped prior expectations over the underlying structure 
on the second graph, shown by improved task perfor-
mance in the group that had the correct prior structural 
knowledge. By analogy, it is likely that in the current 
study, the temporal structure of the card-sorting tasks was 
generalized over task rules and stimuli using similar 
mechanisms of applying previously learned task adapta-
tions, in this case, the updating threshold or learning rate 
(Baram et al., 2021). Consequently, the frequency of the 
switches encountered during the learning phase drove 
expectations and switch readiness in response to negative 
feedback during the transfer phase. This supports that 
adaptations to the abstract structure of the learning phase 
create an inductive bias that affects how participants 
make environmental inferences in the transfer phase.

Finally, it is important to consider the generalizability 
of our findings. The participant population consisted of 
U.S.-based adult MTurk workers. This online sample 
tends to be more diverse and representative of the U.S. 
population than college student samples, and it is 
known to replicate standard laboratory effects very reli-
ably (Buhrmester et  al., 2018; Crump et  al., 2013). 
Although we would not expect cross-cultural differences 
in these effects, we cannot rule them out. An interesting 
question with respect to other participant populations, 
beyond clinical ones, is whether children and adoles-
cents would show the same behavioral pattern because 
previous studies indicated developmental changes in rein-
forcement learning (e.g., Cohen et al., 2020; Shephard 
et al., 2014). Future work may also examine whether 
learning and transfer of cognitive flexibility show con-
text specificity (e.g., Braem et al., 2020) and whether it 
is influenced by feedback type and feedback intensity 
(e.g., Yee et al., 2016, 2022) and by whether rules switch 
more stochastically rather than every fixed number of 
trials (e.g., Behrens et al., 2007).

In conclusion, we present a novel paradigm showing 
that participants transfer volatility-conditioned rule-
learning rates to new temporal, task, and stimulus con-
texts. This transfer of a task- and stimulus-independent 
rule-learning parameter represents the formation and 
generalization of structural task knowledge for guiding 
cognitive control strategies. Given that impairments in 
the ability to adopt a contextually appropriate level of 
cognitive flexibility are thought to be central to various 
clinical conditions (e.g., Browning et al., 2015; Manly 
et al., 2002; Nassar & Troiani, 2020; Van Eylen et al., 
2011), this new task protocol holds promise for develop-
ing a model-based assessment of individual differences 
in this ability in future studies. Furthermore, learning 
and transfer of cognitive strategies have been a central 
target in applied psychology, where “brain-training” 
interventions have been a popular idea to help improve 
cognitive functioning but have had little success at far 
transfer (Simons et al., 2016). Our demonstration of far 

transfer of cognitive flexibility settings acquired through 
trial-and-error learning may open the door to new, more 
successful approaches in this domain.
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